Pseudomonas aeruginosa serA Gene Is Required for Bacterial Translocation through Caco-2 Cell Monolayers

نویسندگان

  • Masashi Yasuda
  • Syouya Nagata
  • Satoshi Yamane
  • Chinami Kunikata
  • Yutaka Kida
  • Koichi Kuwano
  • Chigusa Suezawa
  • Jun Okuda
چکیده

To specify critical factors responsible for Pseudomonas aeruginosa penetration through the Caco-2 cell epithelial barrier, we analyzed transposon insertion mutants that demonstrated a dramatic reduction in penetration activity relative to P. aeruginosa PAO1 strain. From these strains, mutations could be grouped into five classes, specifically flagellin-associated genes, pili-associated genes, heat-shock protein genes, genes related to the glycolytic pathway, and biosynthesis-related genes. Of these mutants, we here focused on the serA mutant, as the association between this gene and penetration activity is yet unknown. Inactivation of the serA gene caused significant repression of bacterial penetration through Caco-2 cell monolayers with decreased swimming and swarming motilities, bacterial adherence, and fly mortality rate, as well as repression of ExoS secretion; however, twitching motility was not affected. Furthermore, L-serine, which is known to inhibit the D-3-phosphoglycerate dehydrogenase activity of the SerA protein, caused significant reductions in penetration through Caco-2 cell monolayers, swarming and swimming motilities, bacterial adherence to Caco-2 cells, and virulence in flies in the wild-type P. aeruginosa PAO1 strain. Together, these results suggest that serA is associated with bacterial motility and adherence, which are mediated by flagella that play a key role in the penetration of P. aeruginosa through Caco-2 cell monolayers. Oral administration of L-serine to compromised hosts might have the potential to interfere with bacterial translocation and prevent septicemia caused by P. aeruginosa through inhibition of serA function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adherence to and penetration of human intestinal Caco-2 epithelial cell monolayers by Pseudomonas aeruginosa.

Clinical isolates of Pseudomonas aeruginosa from blood adhered to and penetrated intestinal Caco-2 cell monolayers to a greater degree than did isolates from sputum, with a concomitant drastic decrease in transepithelial electrical resistance. PAO-PR1, an avirulent exotoxin A mutant of PAO1, did not cause a decrease in the resistance. The Caco-2 monolayer system may be useful for the evaluation...

متن کامل

Components of intestinal epithelial hypoxia activate the virulence circuitry of Pseudomonas.

We have previously shown that a lethal virulence trait in Pseudomonas aeruginosa, the PA-I lectin, is expressed by bacteria within the intestinal lumen of surgically stressed mice. The aim of this study was to determine whether intestinal epithelial hypoxia, a common response to surgical stress, could activate PA-I expression. A fusion construct was generated to express green fluorescent protei...

متن کامل

Extracellular Signals of a Human Epithelial Colorectal Adenocarcinoma (Caco-2) Cell Line Facilitate the Penetration of Pseudomonas aeruginosa PAO1 Strain through the Mucin Layer

Pseudomonas aeruginosa can penetrate the layer of mucus formed by host intestinal epithelial cells, often resulting in sepsis in immunocompromised patients. We have previously demonstrated that P. aeruginosa can penetrate the mucin layer by flagellar motility and the degradation of the mucin layer. However, it remains unclear how P. aeruginosa initially recognizes epithelial cells. Using the hu...

متن کامل

Use of immunogenic moiety of Pseudomonas aeruginosa exotoxin A as a DNA vaccine in experimentally contaminated mice

Background: DNA immunization is an appropriate method to produce an immunological response. Pseudomonas aeruginosa produces exotoxin A which is highly cytotoxic for eukaryotic cells. Since domains II (translocation domain) and 1b of the toxin have antigenic qualities, so they could be  useful candidates to protect against pseudomonas infections. Objectives: To evaluate if recombinant plasmid co...

متن کامل

Translocation of ExsE into Chinese hamster ovary cells is required for transcriptional induction of the Pseudomonas aeruginosa type III secretion system.

Transcription of the Pseudomonas aeruginosa type III secretion system (T3SS) is induced under Ca(2+)-limiting growth conditions or following the contact of the bacteria with host cells. The regulatory response to low Ca(2+) levels is initiated by the T3SS-mediated secretion of ExsE, a negative regulatory protein that prevents T3SS gene transcription. In the present study, we demonstrated that E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017